
 Journal of Innovative Engineering and Research (JIER)

 Vol.- 6, Issue -2, October 2023, pp. 16-19 (4 pages)

ISSN (Online) : 2581–6357, Vol. – 6, Issue -2, 2023 @ JIER Page 16

Abstract— In recent years, the practice of Software Development

(SD) has become more common in the software industry. The

advantages of globalization, the economy, location, speed to

market, organizational strategy, the availability of qualified

workers, and lower prices are all factors in this shift. One of the

most well-known agile approaches is Extreme Programming

(XP), which places a premium on clarity, openness, bravery, and

feedback. High demand and a need for goods from customers and

clients are putting a strain on the software industry's ability to

provide high-quality items quickly. Small delays in the release

may have a huge influence on the company's image and

profitability. In software engineering, cost estimate plays a

significant role in contract negotiation and project execution. A

good Development plan reduces the risks and the inefficiencies

related to the Development task. Development effort and

productivity are difficult to quantify because of a variety of

internal organizational elements and procedures related to the

product itself. Development process productivity is often lower

than development process productivity.

Index terms: Extreme Programming, Software, Development,

Technology.

I. INTRODUCTION

Today's world is entirely influenced by SW technology. There

is almost no one left who doesn't use some kind of SW

technology on a daily basis now. These SW components may

be accessed in a variety of ways, including standalone

programs, web programming, mobile apps, and more. As the

usage of SW technology grows, so does the need for new,

improved, and high-quality SW products. Nowadays,

practically everyone is linked to technology in some way,

whether directly or indirectly, thanks to the widespread

availability of widely used mobile phones.

Government, as well as community and private efforts, have

all been impacted by the expansion of technology. Without

technology, we are unable to confront the world and lead

regular lives. As may be seen from the above, there are a large

number of users of SW. As the number of users grows, so does

the need for innovative and high-quality software. The

process of creating software is one of iterative,

resource-constrained, well-focused development. In order to

entice people to utilize technology, new and improved

software (SW) must be developed. It's a must for the

industry's success. High demand and a need for goods from

customers and clients are putting a strain on the software

industry's ability to provide high-quality items quickly. Small

delays in the release may have a huge influence on the

company's image and profitability. This situation is a result of

companies still adhering to the traditional software

development process. Until recently, the process of

developing software was seen as a sequence of processes that

were followed by the implementation of code. While it may

have worked well at first, as use grew, it became less

appealing to both the client and the end user. Increased

consumer demand has resulted in an increase in competition

for the best possible product.

II. LITERATURE REVIEW

Hohl, P., Klünder, J., van Bennekum, A. et al. (2018), In

2001, seventeen professionals set up the manifesto for agile

software development. They wanted to define values and

basic principles for better software development. On top of

being brought into focus, the manifesto has been widely

adopted by developers, in software-developing organizations

and outside the world of IT. Agile principles and their

implementation in practice have paved the way for radical new

and innovative ways of software and product development. In

parallel, the understanding of the manifesto’s underlying

principles evolved over time. This, in turn, may affect current

and future applications of agile principles. This article

presents results from a survey and an interview study in

collaboration with the original contributors of the manifesto

for agile software development. Furthermore, it comprises the

results from a workshop with one of the original authors. This

publication focuses on the origins of the manifesto, the

contributors’ views from today’s perspective, and their

outlook on future directions. We evaluated 11 responses from

the survey and 14 interviews to understand the viewpoint of

the contributors. They emphasize that agile methods need to

be carefully selected and agile should not be seen as a silver

bullet. They underline the importance of considering the

variety of different practices and methods that had an

influence on the manifesto. Furthermore, they mention that

people should question their current understanding of “agile”

and recommend reconsidering the core ideas of the manifesto.

Theo, The unissen, Uwevan Heescha, Paris Avgeriou

(2022) With an increase in Agile, Lean, and DevOps software

methodologies over the last years (collectively referred to as

Extreme Programming in Software Development
 Dr. Sanjay Singh Bhadoriya

1
 and Saurabh Parikh

2

1,2
 Department of Computer Application, Dr. A. P. J. Abdul Kalam University, Indore 452010, India

 Corresponding Author Email: saurabhmparikh@gmail.com

https://www.sciencedirect.com/topics/computer-science/devops

 Journal of Innovative Engineering and Research (JIER)

 Vol.- 6, Issue -2, October 2023, pp. 16-19 (4 pages)

ISSN (Online) : 2581–6357, Vol. – 6, Issue -2, 2023 @ JIER Page 17

Continuous Software Development (CSD)), we have observed

that documentation is often poor. Objective: This work aims at

collecting studies on documentation challenges,

documentation practices, and tools that can support

documentation in CSD. Method: A systematic mapping

study was conducted to identify and analyze research on

documentation in CSD, covering publications between 2001

and 2019. Results: A total of 63 studies were selected. We

found 40 studies related to documentation practices and

challenges, and 23 studies related to tools used in CSD. The

challenges include: informal documentation is hard to

understand, documentation is considered as waste,

productivity is measured by working software only,

documentation is out-of-sync with the software and there is a

short-term focus. The practices include: non-written and

informal communication, the usage of development artifacts

for documentation, and the use of architecture frameworks.

We also made an inventory of numerous tools that can be used

for documentation purposes in CSD. Overall, we recommend

the usage of executable documentation, modern tools and

technologies to retrieve information and transform it into

documentation, and the practice of minimal documentation

upfront combined with detailed design for knowledge transfer

afterwards. Conclusion: It is of paramount importance to

increase the quantity and quality of documentation in CSD.

While this remains challenging, practitioners will benefit from

applying the identified practices and tools in order to mitigate

the stated challenges.

Shrivastava, et al (2021) Extreme programming was

developed as a solution to the problem of method selection

that has arisen with the rise of start-ups and the transition of

established businesses to online commerce. In this study, we

aimed to collect a variety of relevant examples. One of the

most well-known agile approaches to developing software is

called extreme programming. Customer happiness, improved

software quality, and effective project management are all

benefits of extreme programming. Teams tend to be small, but

everyone works well together. This paradigm is based on

ongoing dialogue and the incorporation of new ideas and

features, making it a dynamic approach to creating software.

Maleeha, Yasvi (2019) Extreme programming is an iterative

approach to software development that attempts to make

better software and aid in finding the best possible solution.

Extreme Programming is distinct from other approaches to

software development because of its emphasis on flexibility

and rapid response to evolving client needs. Better outcomes

have been achieved in software development thanks to the use

of extreme programming as a technique.

Sadath, Lipsa & Karim, Kayvan & Gill,

Stephen (2018) Developing software that is both

functional and easily maintained in order to fulfill the

needs of a certain use case is an example of software

engineering. Due to the higher degree of abstraction

required for this kind of manufacturing, it differs

fundamentally from other forms of engineering practice.

This reality gives rise to several strategies for long-term

success in the software business. This method's

significance in ensuring the long-term health of the

academic software sector cannot be overstated. In order to

establish a shared understanding and technical foundation

in the academic community, we propose a framework

called XPIA (Extreme Programming In Academia) that

employs tried-and-true methods from the software

engineering industry, with a special emphasis on pair

programming.

III. SOFTWARE DEVELOPMENT

A. It is expected that software will evolve and alter

throughout the course of its lifespan. A software product's

lifespan necessitates development. For the sake of keeping

the program running, preventing and correcting software

errors, and enhancing its usefulness, software development

is necessary. Developing software is the process of making

changes to a software system or a component after it has

been delivered in order to fix bugs, enhance performance or

other characteristics, or to adapt to changing environmental

conditions. Corrective, adaptive, perfect, and preventative

are some of the classifications of Development. Adaptive

Development focuses on adapting to changes in the

software environment, whereas perfective Development

focuses on meeting new user needs. Error correction is

under corrective development, while error prevention falls

under preventive development, which aims to keep

problems from occurring in the first place. It has been

noticed that corrective development is believed to be

conventional, while others are considered to be a kind of

evolution in software. Most change requests in

Development fall into the corrective or perfective category,

according to recent research.

B. Development accounts for between 40 and 90

percent of the overall cost of a software system's lifespan,

according to many empirical studies. There is always a need

for new software systems to stay up with developments in

the software environment. It is more cost-effective to reuse

and improve existing systems rather than to develop a new

one, thanks to the economic advantages. The current

techniques and models of development are taken from the

current development approaches and models. New software

development paradigms have emerged as a result of the

dynamic and demanding nature of the software industry.

Software development is often referred to be an iterative

process because of the way development is conducted.

Examining these distinctions more closely demonstrates how

Development differs from the software development life

cycle. It is also essential to have a Development-conscious

model since the beginning phases of Development are more

https://www.sciencedirect.com/topics/computer-science/systematic-mapping-study
https://www.sciencedirect.com/topics/computer-science/systematic-mapping-study
https://www.sciencedirect.com/topics/computer-science/systematic-mapping-study

 Journal of Innovative Engineering and Research (JIER)

 Vol.- 6, Issue -2, October 2023, pp. 16-19 (4 pages)

ISSN (Online) : 2581–6357, Vol. – 6, Issue -2, 2023 @ JIER Page 18

critical and need more work than development. We have our

own set of procedures for creating computer programs called

"software development life cycles". It's important to follow

these models since they break down the development process

into discrete steps that must be completed in the correct order.

Quick repair, Boehm, Osborne, iterative-enhancement,

full-reuse, etc. are all examples of development-conscious

approaches. Traditional software development process

models, which accept change requests as input and conduct all

stages, are the basis for these process models.

IV. Development Estimation

In order for software development to be a success, accurate

estimations are critical. Despite the fact that software

development is a significant activity and a significant portion

of the overall cost of software, researchers devote less

attention to software development estimate than they do to

software development estimation for new products. Software

development has fewer methods for estimating work than

software development. Models such as the ACT model, the

FP model, and COCOMO 2.0 reuse may estimate software

development effort. Source lines of code, function points, and

object points are used as scaling units in many estimate

techniques. The current software development estimating

methods are based on the old software development

approaches. Realistic results may be achieved using these

models since they take into account the size of a program in

terms of function points and source lines of code, which are

not appropriate metrics for extreme programming.

Changes in Legacy Code: Changes to existing code, such as

fixing bugs or adding new features, are at the heart of

development. Code changes are a time-consuming and costly

undertaking because of the absence of test coverage, outdated

documentation, and a lack of access to original programmers.

Because of its complicated structure, it's difficult to estimate

the effects of modifications to old code. As a consequence,

system instability and defects may emerge from code

modifications that have insufficient test coverage.

Impact of XP practices on maintainability during

Development: The maintainability of a software product has a

significant impact on both the maintenance costs and the

product's overall lifespan. Non-XP software produced using

antiquated and unstructured code has a significant

maintainability concern. Because of this, an experiment is

needed to see how an iterative development life cycle utilizing

XP affects maintainability, productivity and other aspects of

Development. XP (or individual practices) has been the

subject of several evaluation studies, both by industry

professionals and by students in project courses, to determine

whether or not they have an impact on development quality

and productivity.

V. EXTREME PROGRAMMING

Extreme Programming (XP) is one of the numerous prominent

agile approaches. It was created in 1996 by Kent Beck, Ward

Cunningham, and Ron Jeffries, and released in 1999. The first

time XP was used to update the Daimler-Chrysler payment

system was on the Chrysler Comprehensive Compensation

(C3) project. XP's incremental development technique is best

suited for environments that are constantly changing. It is the

goal of XP to increase the quality and responsiveness of

software to changing client needs. Extensively used

procedures like as code reviews and testing have been adapted

for usage in XP. These procedures are applied to an

extraordinary degree. XP is organized on a philosophy with

five values and a set of twelve practices. The principles that

are important to XP include communication, simplicity,

feedback, bravery and respect. It's important to remember that

these values are interdependent and complement each other.

Communication and feedback, for example, aid in

establishing a shared understanding of the project's goals and

progress.

 Small Releases

XP requires a two-week cycle. Every two weeks, some new

feature must be made available. In a few of months, the system

will be in full operation. Every day or every other month, a

new release is created. XP's iterative character is underscored

by its small release strategy. Since XP was released so

quickly, its feature set is quite limited. Customers benefit from

a sense of security about the project's development because of

these frequent, short releases. Developers have validated the

functionality of deployable software at the conclusion of each

iteration in preparation for showing it to clients. For the end

user, the customer may select when and how the product is

released. Small functional units that make good business sense

and can be released into customer environments are the focus

of the release planning.

 Metaphor

An example of this is the use of a metaphor, which is a short

story about how a system works. A metaphor or combination

of metaphors shared by consumers and programmers defines

the system's form. The goal of metaphor is to create an

architecture that is simple to communicate and elaborate

between the client and the developer.

 Sample Design

KISS (Keep It Simple, Stupid) is a philosophy advocated by

the XP methodology, which states that the development team

should strive to keep the system as simple as possible. To

ensure that every time the test runs, everything is

communicated exactly as desired by programmers, the code

must be concise and free of duplicate code.

 Journal of Innovative Engineering and Research (JIER)

 Vol.- 6, Issue -2, October 2023, pp. 16-19 (4 pages)

ISSN (Online) : 2581–6357, Vol. – 6, Issue -2, 2023 @ JIER Page 19

 Tests

XP places a high value on testing and test-driven

development. It necessitates the creation of unit tests prior to

the actual authoring of code. Before developing a single line

of code, programmers write unit test cases. Minute by minute,

unit tests are written. Tests written by customers guarantee

that features are performed as planned. Refactoring requires

the usage of unit tests in order to get immediate feedback from

the system, which is why they are an essential part of the

process.

 Refactoring

Small, quick changes are made to the system without affecting

its behavior as part of the refactoring process. Duplicate code

is removed, communication is improved, the process is

simplified, or more flexibility is added so that all tests

continue to execute. A system's exterior behavior isn't altered,

but its extensibility and readability are. The simplicity of

refactoring allows you to experiment with other designs. Code

modifications need a strong sense of self-confidence. It is true

that refactoring streamlines designs. The refactoring process

facilitates the simplification of code in order to make it more

general.

 Pair Programming

Pair programming is a kind of programming in which two

programmers work together on the same computer system to

produce code. Driver and observer are the two roles that are

defined in this XP methodology. The observer evaluates the

code written by the driver.

VI. CONCLUSION

To ensure excellent software is delivered on schedule with

little effort, several approaches have been created to impose a

disciplined procedure on the creation of software. In response

to the problems with traditional approaches, "agile

techniques" have emerged. XP is an early and widely used

form of agile development. Many in business and academics

have hailed XP as revolutionary, yet there is few quantitative

evidence to back up their assertions. The goal of this study

was to determine whether or not XP increased software

production, decreased the cost of change, and improved the

efficiency with which new developers picked up skills via pair

programming. Software development is often referred to be

an iterative process because of the way development is

conducted. Examining these distinctions more closely

demonstrates how Development differs from the software

development life cycle.

REFERENCES

1. Hohl, P., Klünder, J., van Bennekum, A. et al. Back to

the future: origins and directions of the “Agile

Manifesto” – views of the originators. J Softw Eng Res

Dev 6, 15, 2018.

2. Theunissen, Theo & Heesch, Uwe & Avgeriou, Paris. A

mapping study on documentation in Continuous

Software Development. Information and Software

Technology. 142, 2022 106733.

10.1016/j.infsof.2021.106733.

3. Shrivastava, Anchit & Jaggi, Isha & Katoch, Nandita &

Deepali, Gupta & Gupta, Sheifali. A Systematic Review

on Extreme Programming. Journal of Physics:

Conference Series. 1969, 2021.

4. Yasvi, Maleeha. Review On Extreme Programming-XP,

2019

5. Sadath, Lipsa & Karim, Kayvan & Gill, Stephen.

Extreme programming implementation in academia for

software engineering sustainability, (2018).

10.1109/ICASET.2018.8376925.

6. Darwish, N. R. Enhancements in Scum Framework

Using Extreme Programming Practices. International

Journal of Intelligent Computing and Information

Sciences (IJICIS), Ain Shams University, 14(2), 53-67,

2014

7. Abdullah, Elmuntasir & Abdelsatir, El-Tigani. Extreme

programming applied in a large-scale distributed

system. 442-446, 2013

10.1109/ICCEEE.2013.6633979.

8. Shrivastava, Anchit & Jaggi, Isha & Katoch, Nandita &

Deepali, Gupta & Gupta, Sheifali. A Systematic Review

on Extreme Programming. Journal of Physics:

Conference Series. 1969. 012046, 2021,

10.1088/1742-6596/1969/1/012046.

9. Rojas, S. & Guzmán, L. & Coronel, P. & Benítez, A.

Scrum with eXtreme Programming: An Agile

Alternative in Software Development, 2021,

10.1007/978-3-030-60467-7_29.

10. Ekhlaif, M. & Elshaar, S.A. A systematic study of

extreme programming and their implementation in

Libyan Software. 23. 410-417, 2013,

10.5829/idosi.wasj.2013.23.03.13071,

